首页 > kaiyunty

将600V输入的隔离反激式控制器的电源电压扩展至800V

时间: 2023-12-16 13:23:07 |   作者: kaiyunty

  利用光耦合器将稳压信息从次级侧基准电源电路传输到初级侧,由此实现准确稳压。问题就在于光耦合器会大幅度提升隔离设计的复杂性:存在传播延迟、老化和增益变化,所有这一些都会使电源回路补偿变得复杂,且会降低可靠性。此外,在启动过程中,需要采用泄放电阻或高压启动电路来初始启动IC。除非在启动组件中额外添加一个高压MOSFET,否则泄放电阻将消耗大量电源。

  LT8316是一种微功率、高压反激式控制器,不需要光耦合器、复杂的次级侧基准电源电路或附加的启动组件。

  LT8316采用热增强型20引脚TSSOP封装,去除了4个引脚,以显示高压间隔。通过对第三绕组的隔离输出电压采样,无需采用光耦合器来进行稳压。输出电压通过两个外部电阻和第三个可选温度补偿电阻进行编程。准谐振边界模式操作有助于实现出色的负载调整、小变压器尺寸和低开关损耗,特别是在高输入电压下。

  由于输出电压是在次级侧电流几乎为零时检测,所以无需采用外部负载补偿电阻和电容。因此,LT8316解决方案采用的组件数量较少,大大简化了隔离反激式转换器的设计(参见图1)。

  图1. 完整的12 V隔离反激式转换器,适用于20 V至800 V广泛输出,最小启动电压为260 V。

  LT8316的额定工作电压最大为600 V,但能够最终靠更换与VIN引脚串联的齐纳二极管来进行扩展。齐纳二极管的电压会降低供给芯片的电压,使得电源电压超过600 V。

  图1所示为输入电压为18 V至800 V的反激式转换器的整个原理图。如需查看详细的组件选择指南,请参考LT8316数据手册。220 V齐纳二极管与VIN引脚串联时,鉴于齐纳二极管存在电压容差,电路的最小启动电压约为260V。注意,在启动后,LT8316可以在电压低于260V时正常工作。

  图2显示了不同输入电压下的效率,反激式转换器的峰值效率达到91%。即使没有光耦合器,不同输入电压下的负载调整仍就保持准确,具体如图3所示。

  之前的解决方案虽然将输入电压扩展到800 V,但齐纳二极管将最小启动电压提高到了260 V。挑战在于,有些应用既需要高输入电压,也需要低启动电压。

  图4所示为备选的800 V最大输入电压解决方案。这个电路使用齐纳二极管和一个二极管来构成电压稳压器。输入电压可以稳定增加至800 V,而VIN引脚的电压稳定保持在560 V左右。这个电路的优点是,它允许LT8316以更低的电源电压启动。

  图4. 隔离反激式转换器的原理图:20 V至800 V输入转换至12 V,启动电压低。

  LT8316的高压输入功能在简单的非隔离降压转换器中可以轻轻松松实现,且无需采用隔离式变压器。采用价格相对便宜的现成电感作为电磁组件。

  对于非隔离降压应用,LT8316的接地引脚连接至降压拓扑的开关节点,其电压可变。LT8316采用独有的检测的新方法,只在开关节点接地时检测输出电压,因此降压原理图相当简单。

  与反激式转换器一样,降压转换器的电源电压也可以扩展。图5显示了输入电压最高可达800 V的降压转换器的原理图。LT8316的电源电压和VIN引脚之间有一个220 V齐纳二极管。鉴于齐纳二极管存在电压容差,最小的启动电压为260 V。启动之后,LT8316继续以更低的电源电压正常运行。图6显示了不同输入电压下的效率,降压转换器的峰值效率达到91%。图7显示了负载和电压调整率。

  与图4中的反激式转换器类似,可以在电源电压和VIN引脚之间增加电压稳压器,以使降压转换器实现低启动电压。必须要格外注意的是,GND引脚和VIN引脚之间有一个体二极管,它会增高晶体管的射极电压,导致基极射极击穿。为避免出现这样一种情况,我们增加两个二极管来保护该晶体管。图8所示为低启动电压解决方案。

  LT8316在准谐振边界模式下工作,无需采用光耦合器就可以实现出色稳压。此外,它还有着非常丰富的特性,包括低纹波突发模式(Burst Mode®)工作、软启动、可编程电流限制、欠压锁定、温度补偿和低静态电流。高度集成简化了组件数量较少的高性能解决方案的设计,涉及的应用场景范围十分普遍,从由电池供电的系统到汽车、工业、医疗、电信电源以及隔离辅助/家用电源。

上一篇:2023全国特种作业操作证低压电工模拟考试试卷一[安考星]

下一篇:接地开关的作业原理是什么?